Neutrino Factory Acceleration Scenarios

J. Scott Berg Brookhaven National Laboratory NFMCC Collaboration Meeting 14 March 2006

Reutrino Factory

Outline

- Description of the acceleration schemes (neutrino factory)
- Recent work on the RLA
- Tracking in linear non-scaling FFAGs
- Electron model for linear non-scaling FFAG (EMMA)
- Analysis of the NuFactJ FFAG scheme
- Analysis of an isochronous FFAG
- New bunch train scenario

Acceleration SchemesList of Schemes

- The Study IIa scheme
- Isochronous FFAGs
- Scaling FFAGs

Acceleration Schemes The Study IIa Scheme

- Linac from cooling to 1.5 GeV
- Dogbone RLA from 1.5 GeV to 5 GeV
- Linear non-scaling FFAG from 5 GeV to 10 GeV
 - Save money by more efficient use of the RF
- Linear non-scaling FFAG from 10 GeV to 20 GeV

The Study IIa Scheme Linac

The Study IIa Scheme Dogbone RLA

The Study IIa Scheme 5–10 GeV FFAG

The Study IIa Scheme 10–20 GeV FFAG

The Study IIa Scheme

Acceleration Schemes Isochronous FFAGs

- Replace the FFAGs in the NFMCC scheme with "isochronous FFAGs"
- Linear non-scaling FFAGs have a time of flight that depends on energy
 - Difficult to keep bunch synchronized with the RF
 - Puts a lower limit on the required voltage
- Use nonlinear magnets to make the FFAG isochronous over the entire energy range
 - May limit dynamic aperture
 - Will analyze a bit later
- Can also use two types of cells: longer cells with RF, shorter cells without
 - Can reduce machine cost
 - Need to match between

Isochronous FFAGs with Insertions

Acceleration Schemes Scaling FFAGs

- The NuFactJ scheme
- Scaling FFAGs only for entire neutrino factory, from capture to (not including) storage ring
- 4 stages, 0.3–1 GeV/c, 1–3 GeV/c, 3–10 GeV/c, 10–20 GeV/c
- Idea: this may be inexpensive
 - Avoids the entire front end
- Scaling FFAGs can have large dynamic aperture
 - Arbitrarily large energy acceptance
 - No resonance crossing issues
 - Will it be large enough? Nonlinearities.
- Use low-frequency RF to accelerate
 - Lots of voltage needed at low frequency
- Will analyze later

Scaling FFAGs FFAGs on Tokai Campus

Dogbone RLA

- Full linear design exists
 - Needs to be converted into real terms, costed
 - Compare cost per GeV to FFAGs
- Misalignment and gradient error sensitivity studied
 - Orbit distortion manageable with 1 mm orbit errors
 - Quad field tolerances 0.2%
- Next steps
 - Add sextupoles to get chromatics right
 - Look at beam with finite energy spread

Tracking in Linear Non-Scaling FFAGs

- 6-D tracking studies have begun on linear non-scaling FFAGs (Machida, Méot, Lemeut). Most codes can't handle FFAGs well.
- With real acceleration, particles with high transverse amplitude aren't accelerated properly
 - Not a problem with uniform acceleration (what we tested before)
 - Low transverse amplitudes are fine
- Cause: time of flight depends on amplitude
 - Palmer discovered this long ago, but we didn't realize the consequences
 - Can predict the dependence:

$$\frac{dT}{d\boldsymbol{J}} = -2\pi p \frac{d\boldsymbol{\nu}}{dE}$$

No effect in scaling FFAGs!

Time of Flight Dependence on Amplitude Different Transverse Amplitudes

Time of Flight Dependence on Amplitude Time of Flight Curves

Tracking in Linear Non-Scaling FFAGs Distribution Choice

- Effect creates problems for simultaneously large transverse and longitudinal amplitudes
- Choice of distribution matters a lot
 - ◆ Ellipsoidal:

$$\frac{2J_x}{A_x} + \frac{2J_y}{A_y} + \frac{2J_z}{A_z} \leqslant 1$$

- ⋆ if amplitudes are large in one plane, they are small in the other
- Tensor product

$$\frac{2J_x}{A_x} \leqslant 1 \qquad \qquad \frac{2J_y}{A_y} \leqslant 1 \qquad \qquad \frac{2J_z}{A_z} \leqslant 1$$

- * Amplitudes can be simultaneously high in all planes
- ⋆ Equivalent problems to ellipsoid with 3x larger acceptance

Tracking in Linear Non-Scaling FFAGs Tracking with Different Distributions

Tracking in Linear Non-Scaling FFAGs Time of Flight Dependence on Amplitude

- Different amplitudes follow different channels in longitudinal phase space
 - Channels may not overlap
- How will we address the problem?
 - Adjust machine parameters to open up the channel more
 - ⋆ More voltage
 - * Longer ring
 - * Higher harmonic RF
 - ⋆ Costs money
 - Adjust phase space more carefully to optimize what we have
 - ⋆ Current model assumes that time of flight is perfectly parabolic
 - ★ Find best area of overlap (right now, using optimum for low amplitude)

Tracking in Linear Non-Scaling FFAGs Longitudinal Phase Space Channel

FFAG Electron Model

- Linear non-scaling FFAGs have never been built
- Create an inexpensive model of a linear-nonscaling FFAG
- In the last year we have
 - Refined the experimental goals of the machine
 - Settled on lattice specifications
 - Begun to look at hardware

FFAG Electron Model Fixed Frequency Longitudinal Dynamics

- Accelerate up an S-shaped channel in phase space
 - Channel shape governed by time of flight dependence on energy
 - ◆ Time of flight dependence governed by transverse lattice
- Insure channel is wide enough to give acceptable distortion
- Varying machine parameters does two things
 - Pinches off the phase space channel, or makes it larger
 - Changes how energy and RF phase vary as you accelerate

FFAG Electron Model Longitudinal Phase Space

FFAG Electron Model Time of Flight

FFAG Electron Model Longitudinal Dynamics: Things to Study

- As we vary machine parameters, do we get the expected behavior?
 - Do we lose transmission at the expected parameter values?
 - Is the emittance growth what we predict?
- The horizontal lattice determines the time of flight behavior
 - Do we get the predicted time-of-flight behavior as a function of energy?
- Effect of errors on transmission, longitudinal emittance growth
 - Phase errors in cavities
 - Lattice effors (as they affect time of flight)

FFAG Electron Model Resonance Crossing

- During acceleration, we cross large numbers of (hopefully) weakly-driven "resonances"
- Result is emittance growth and/or beam loss
- In fixed-frequency acceleration: rate of resonance crossing depends on energy
- Resonance crossing will depend on tune/energy profile

FFAG Electron Model Tune Profile

FFAG Electron Model Resonance Crossing: Things to Study

- As we vary the resonance crossing rate (overall acceleration rate), do we get expected growth rates/losses?
- As we vary the tune range, how does the emittance growth vary?
 Check predictions.
- As we vary b, which changes where the high and low acceleration rates are, how does the emittance growth change?
- Introduce magnet displacements and field errors; how does this affect the emittance growth?
- Introduce low, variable-frequency RF system to study
 - Uniform rate of crossing resonances
 - Slower resonance crossing rates than we can have with the high-frequency system.

FFAG Electron Model

Simulation

- Much of this program is a verification of results obtained through simulation
 - But we want to test how varying the parameters of a muon FFAG will affect its performance
 - We of course want to address the issue of whether it works at all!
- We must be able to simulate the full system
 - ◆ Full 6-D
 - Magnet end fields
 - Arbitrary magnet displacements
 - Correct handling of RF timing
- Real machines will have these same simulation requirements
- If results do not match simulation, our task should be to determine what went wrong in the simulation

FFAG Electron Model Hardware Requirements

- To test parameter space of longitudinal dynamics, for fixed transverse lattice
 - ◆ Vary cavity frequency (part in 10³: probably straightforward, but significant hardware required)
 - Vary cavity voltage (factor of 4 to 6: easy, since low voltages)
 - Vary individual cavity phases (with relatively high precision)
- To see the effect of the transverse lattice on the longitudinal dynamics (i.e., vary the parabola)
 - Independent variability of dipole and quadrupole components of the magnets
 - Without both components variable, the tune profile cannot be decoupled from the parabola centering

FFAG Electron Model Hardware Requirements (cont.)

- Resonace crossing
 - Requirements as above
 - Ability to adjust magnet positions to study displacement errors
 - Individual control of magnet strengths to study gradient errors
- Without independent control of quadrupole and dipole
 - ◆ Difficult to look independently at certain effects (tune profile, parabola shape, etc.). Effects are coupled together.
 - Still will be doing simulation verification
 - Longitudinal RF parameters can still be explored thoroughly
 - Can still look at resonance crossing rate
- Lower-frequency RF system for second stage

- Gradient dipole
 - Can't independently vary dipole and quadrupole
- Shifted quadruoples
 - Vary dipole by moving the magnets
 - ◆ For D, use mirror plate
 - Potential problem: large physical aperture (end fields)

Gradient Dipole Design

FFAG Electron Model Diagnostics

- To measure these effects, need extensive diagnostics
- Longitudinal
 - Can do initial experiments (e.g., look for point of pinch-off) simply by having energy distribution at extraction or in ring
 - To get longitudinal emittance growth, need more detailed diagnostics
- Resonance crossing
 - Need relatively accurate transverse emittance measurement
- Ability to extract is probably important for detailed measurements

FFAG Electron Model

Determining Parameters

- Rate of resonance crossing is (roughly) the product of cells and turns (cell-turns)
 - Muon acceleration: between 500 and 1500 cell-turns
 - More cell-turns requires a larger machine, so try for the low end:
 500 cell-turns
- Match other parameters of muon machines
 - Factor of 2 in energy
 - Low-energy tunes: $\nu_x = 0.39$, $\nu_y = 0.27$
- Pole tip field limitation of magnets
- $a = qV/(\omega \Delta T \Delta E)$: choose 1/12, to have reasonably-sized channel
 - Can make larger if we so desire: voltages are small
- Doublet cells
- Want similar angles and fraction of aperture filled: about 3 mm normalized emittance

FFAG Electron Model Resulting Parameters

- RF frequency choice: with 0.2 T pole tips, 1.3 GHz requires 42 cells, 3 GHz requires 60; choose 1.3 GHz
- Pole tip field: to get 500 cell-turns

Pole Tip Field (T)	0.1	0.2	0.3
Cells	48	42	42
Circumference (m)	23.1	15.9	14.1
Magnet Aspect Ratio (L/A)	2.1	1.3	0.9

- ◆ At 0.1 T, ring is too long
- At 0.3 T, magnet aspect ratio is bad: ends contribute too much
- ◆ Probably prefer 0.2 T or slightly below for balance
- To achieve a = 1/4, need 115 kV per cavity (every other cell has cavity), gradient 1 MV/m: EASY!
 - Issue: too much stored energy extracted if high current, but need high current for diagnostics

NuFactJ Parameters

- Need a description of the field in the FFAG
- NuFactJ report: description based on arcs of sector magnets, run in SAD
- Need to convert to

$$B(r,\theta) = B_0(\theta)(r/r_0)^k$$

 $B_0(\theta)$ piecewise constant

- Geometry determined, only specify fields
- For some lattices, no reasonable guess works

My Versions of NuFactJ Lattices

- Try to fit the tunes, assuming those were chosen carefully
- Can't do this by just varying fields: degeneracy due to scaling
- Vary β_F , B_D , keeping β_0 fixed

My Versions of NuFactJ Lattices Magnet Parameters and Cost

- Machine costs are huge (non-scaling FFAGs:
 5 100 PB each stage)
- Magnet apertures are large
- Fields are very high
- Note: no cavities in cost!
 - RF systems used
 - ★ 0.75 MV/m average over ring, air gap, 5–10 MHz
 - ★ First ring may be variable frequency
 - > New type of magnetic alloy core
 - * All this needs more careful specification, R&D, costing
 - RF cost will be a significant additional cost

My Versions of NuFactJ Lattices Magnet Parameters and Cost

Lattice number	1	2	3	4	5	6
Cells	32	16	64	32	64	120
Average radius (m)	21	10	80	30	90	200
L_F (m)	1.125	1.088	2.111	1.640	2.225	3.257
r_F (cm)	58.3	75.0	54.1	59.7	52.9	45.0
x_F (cm)	-35.5	-51.6	-32.9	-37.3	-34.0	-41.1
B_F (T)	3.442	4.355	3.292	6.282	9.493	6.567
L_D (m)	0.345	0.288	0.696	0.482	0.770	0.766
r_D (cm)	52.2	67.2	48.1	52.1	47.4	41.2
x_D (cm)	-40.6	-60.5	-40.4	-45.7	-41.4	-48.5
B_D (T)	-3.450	-4.368	-3.387	-6.316	-9.301	-10.783
Cost (PB)	281	355	396	527	1153	1410

- These designs were just supposed to by "typical"
- Constrained to fit inside 50 GeV proton ring
- Nobody did anything beyond the SAD model
- RF systems are all R&D projects

FFAGs on Tokai Campus

Lattices from 2002 LBNL FFAG Workshop

- Work was done on improving the high energy (10–20 GeV/c)
 FFAG lattice
 - FODO lattice
 - Two versions
 - * Same number of cells, higher field index, smaller ring
 - ★ Larger ring, more cells even higher field index
- I ran the lattices based on a hard edge model
- Cost reduced significantly from NuFactJ design
 - Apertures and fields both much lower
 - Still high
 - Cost can be improved by increasing cells
 - ⋆ Need to fold decays in as usual

Parameters from 2002 LBNL FFAG Workshop

Cells	180	120	Calla	100	100
Field index	670	330	Cells	180	120
Reference radius (m)	200	120	L_F (m)	1.362	1.422
Ends (m)	0.30	0.20	r_F (cm)	20.4	23.5
D angle (deg)	0.438	0.63	x_F (cm)	1.8	2.0
D length (m)	0.93	0.92	B_F (T)	7.664	9.764
D field (T)	5.795	7.738	L_D (m)	0.928	0.918
F angle (deg)	0.562	0.87	r_D (cm)	17.8	20.5
F length (m)	1.36	1.42	x_D (cm)	-10.9	-12.8
			B_D (T)	-7.282	-9.560
F field (T)	-3.636		Cost (PB)	284	373
Drift length (m)	2.35	1.97	\ /		

2002 LBNL Lattice Cost vs. Cells

New Lattices, not Analyzed as Yet

- There is a 10–20 GeV doublet scaling lattice (early 2003)
 - Expect cost improvement
 - Still waiting on specs for this
- Lowest energy lattice corrected to normal conducting
 - Need to work out costing for that
- New proposal by Mori: 10–20 GeV singlet spiral sector
 - Normal conducting, 100 m radius, 50 cm orbit excursion
 - Passive extraction: orbit jump

Next Steps

- Need to work out details of a working scheme for all stages
 - Analyze all the schemes I currently have
 - Lattices other than first and last probably need to be defined
 - ⋆ Optimized to some extent for cost
 - Need to work out details RF systems
- Need some costing information
 - Normal-conducting scheme at low energy
 - All RF systems
- Start to do more complete simulations

Isochronous FFAG Scenario (Rees)

- Avoid time of flight problems: act like a linac, make machine isochronous
- Two stages: 3.2–8, 8–20 GeV
- Field description
 - Original description based on constructing multiple linear lattices, connecting appropriately
 - ⋆ Resulting field is nonlinear
 - ◆ I fit fields using cubic spline
 - **★** Good fit
 - ⋆ No excess oscillations
 - ⋆ Extrapolates well
 - Note highly nonlinear fields

5-Cell Lattice

O
$$bd(-)$$
 o $F(\pm)$ o $BD(+)$ o $F(\pm)$ o $bd(-)$ O

Field Fits for Isochronous FFAG

- Time of flight variation is exceptionally small
 - Factor of 10 below natural value
- In my computation, tunes go unstable at high energy
 - Possible cause: Rees uses second-order edge effect which I don't
- Tracking results (Méot)
 - Beam loss at high energy end
 - Appears to come from hitting a resonance
 - * Note it occurs just where I say the lattice goes unstable
 - Highly nonlinear fields at high energy could also be driving it into the resonance

Time of Flight in Isochronous FFAG

Tunes in Isochronous FFAG

Isochronous FFAG Beam Loss

Isochronous FFAG Evolution in Tune Space

Isochronous FFAG Observations, Recommendations

- Machine is very fussy:
 - Tiny changes in lattice (0.1% change in lengths) have substantial effect on time of flight
 - Small end effects give drastic change in tunes
- Probably related to very nonlinear fields, especially at high energy
 - Could possibly relax this: certainly room in time of flight
 - ★ Amplitude dependence of time of flight will give big contribution to TOF anyhow
 - Could consider reducing energy range
- Notice "wiggles" in time of flight
 - More automated design method would take this out
 - May also improve perfomance

Isochronous FFAG

Tasks

- Next, try to do some costing
 - Since lattice unstable at high energy, will have to make guess for beam sizes there.
- Still want to add insertions
 - Short cells in arcs, longer cells in straights to fit RF
 - May reduce cost
 - Matching tricky
 - Get lattice without insertions working first

New Bunch Train Scheme

- A solid target would like to see as few particles as possible
- Fewer particles per bunch in the proton driver makes things easier
- Acceleration can't run with too high of a rep rate
 - Cavities throw away unused stored energy
 - Leads to high average power
- Solution: use sub-trains
 - ◆ There is a time period for the proton driver to accelerate several bunches: T₀
 - ◆ The bunches hit the target, separated by a time T₁
 - $\star T_1$ much less than the (superconducting) cavity fill time
 - * Avoids increase in average power

New Bunch Train Scheme Bunch Train Timing

New Bunch Train Scheme Acceleration Requirements

- Acceleration: must replenish the stored energy in the cavities before the next bunch comes
 - 5 bunch trains, 4 MW proton driver, $T_0 = 1/50$ Hz, existing cavities in 10–20 GeV FFAG:
 - $Q_L = 10^6$, 1 MW limit per cavity cell, allows $T_1 = 45~\mu \text{s}$
 - At existing power levels (0.5 MW per cavity cell), requires $T_1 = 135~\mu \text{s}$
 - Average power required far from being proportional to number of trains
- Beam loading reduced drastically
 - Certainly needed to be addressed: different bunches in train had different energies
 - This is not the only solution
- Storage ring a challenge

Conclusions

- We have an RLA lattice up to 5 GeV, and analysis is proceeding.
- We are trying to compare different FFAG systems
 - Linear non-scaling FFAGs are having problems with large ampliutde particles. Know how to address, additional costs.
 - Scaling FFAGs look costly, but optimization seems to be helping that. RF may be an issue.
 - Isochronous FFAGs have serious dynamic aperture problems, but more work may address this.
- We have and are continuing to develop a good experimental plan and design for a model to study linear non-scaling FFAGs
- We have a new idea for a scheme for bunch trains, which is a nice way to address the beam loading issue in acceleration.

